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We suggest a new algorithm for the solution of the time domain Maxwell equations in dis-
persive media. After spacial discretization we obtain a large system of time-convolution
equations. Then this system is projected onto a small subspace consisting of the Laplace
domain solutions for a preselected set of Laplace parameters. This approach is a generaliza-
tion of the rational Krylov subspace approach for the solution of non-dispersive Maxwell’s
systems. We show that the projected system preserves such properties of the initial system
as stability and passivity. As an example we consider the 3D quasistationary induced polar-
ization problem with the Cole–Cole conductivity model important for geophysical oil
exploration. Our numerical experiments show that the introduction of the induced polar-
ization does not have significant effect on convergence.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

It was observed since 1920s [29], that electrical conductivity and dielectric permeability of rocks are frequency depen-
dent. This phenomenon has generic name the Dispersive Media, or the Induced Polarization for the frequency-dependent
conductivity, and intensively described in physical and geophysical literature [5–7,18,22,25,26,37].

The time-domain evolution of electromagnetic fields in dispersive medium is described by convolutionary Maxwell’s sys-
tem. There are two approaches to solving such problems. One way is time-stepping [23,24,34]. Even for the non-dispersive
(a.k.a. inductive) diffusive problems this approach can be expensive due to stability limitations and slow convergence. How-
ever, the computation of convolution operator requires additional several time layers, that increases the cost compared to
the non-dispersive problem. Another approach is to transform the frequency domain solution to the time domain using
the discrete inverse Fourier transform [12,20]. To evaluate such integrals one needs to compute a frequency domain solution
for every quadrature node that may require hundreds forward solutions for good enough accuracy. We should point out, that
some improvement in this direction could be achieved by using recently developed optimized quadratures on complex plane
[31].
. All rights reserved.
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Krylov subspace methods (originally intended for spectral problems and linear algebraic systems) became an increasedly
popular tool for the solution of parabolic equations (the matrix exponential function) in 1980s [14,16,21,28,32]. They di-
rectly project semi-discrete systems onto Krylov subspaces and can be considered as spectrally optimized explicit time-step-
ping methods. Such an approach (a.k.a. spectral Lanczos decomposition method) was efficiently applied to the diffusive
(non-dispersive) Maxwell system in [8]. It yields faster than exponential (quadratic) convergence rate, however it is signif-
icantly affected by the problem stiffness. A more recent approach, based on so-called rational Krylov subspaces (RKS) intro-
duced in [27], allows one to circumvent this drawback. The RKS reduction (RKSR) (a.k.a. the RKS projection) method was
applied to inductive diffusive Maxwell’s equations in [4,9,11,17] (see also some important results on the RKSR analysis in
[3]). Similar to the implicit time-stepping and the contour integration methods the RKSR requires the solution of a number
of shifted frequency domain problems, but in the latter method this number is much smaller thanks to Galerkin’s optimal
properties.

Due to nonlinear frequency dependence of the operator neither Krylov nor rational Krylov subspace method can be di-
rectly applied to the dispersive problems. In this work we develop a concept related in some sense to parametric model
reduction [33], i.e, we project frequency domain problem onto a so-called parameter-dependent Krylov subspace (PDKS)
with properly chosen parameters. We call this method the parameter-dependent Krylov subspace reduction (PDKSR). This
approach is also related to so-called nonlinear Krylov subspaces, used for the computation of nonlinear spectrum [30].
For the non-dispersive case it is equivalent to the RKSR. The PDKSR is first applied in the frequency domain and then the
obtained solution transformed to the time domain using numerical integration. We show that the projected problem pre-
serves such important properties of the initial problem as stability and passivity.

As an example of application, we consider the Cole–Cole induced polarization model in conductive media (corresponding
to a fractional order PDE system) arising in electromagnetic geophysical exploration. Although the conductivity is complex in
this case, its high frequency asymptote is the same as for non-dispersive case. Hence for the parameter-dependent Krylov
Subspace we use the real poles optimized for large-scale inductive problems in [9]. The numerical experiment shows that
the introduction of the Cole–Cole dispersion qualitatively changes behavior of the solution, however it has very little effect
on convergence speed of the subspace reduction.

2. Formulation of the problem

To fix the idea, we consider the quasistationary time-domain Maxwell system in R3 � R
r�H ¼ Jc þ J0;
r� E ¼ �l @H

@t :
ð1Þ
Here H is magnetic field, E is electric field, Jc; J
0 are conductivity and exciting (external) currents respectively; both currents

are real functions of time t 2 R and space r 2 R3 coordinates. We assume for simplicity that magnetic permeability l > 0 is
constant. The quasistationary approximation (when the displacement current is neglected) is commonly assumed in deep
geophysical electromagnetic exploration [6].

The conductivity current Jc can be expressed with the help of the generalized Ohm law in terms of electric field as follows:
Jc ¼ r � E ¼
Z 1

�1
rðsÞEðt � sÞds; ð2Þ
where r is an electric conductivity function of space and convolutional time s, and
r ¼ 0; for s < 0:
We impose the initial condition
E ¼ 0; H ¼ 0; for t < 0; ð3Þ
and for consistency we require that J0 jt<0 ¼ 0.

Remark 1. The displacement current
Jd ¼ � �
@

@t
E ¼

Z 1

�1
�ðsÞ @Eðt � sÞ

dt
ds;
with dispersive dielectric permittivity function � can be added to the convolution system (2) without changing its structure
by substituting
g ¼ r� d�
ds
instead of r in (2), so the algorithm described below is applicable for the case of dispersive dielectric permittivity too (pos-
sibly with a different choice of optimized interpolation frequencies).

We also need the following assumptions on the temporal growth of the coefficient and J0ðt; rÞ.
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Assumption 1. The Laplace transform ~rðsÞ ¼
R1

0 e�ssrðsÞds exists and is analytic in Cþ ¼ fs 2 C : RðsÞ > 0g. In addition, there
exist a > 0 and b > 0 such that b P Rð~rÞP a in Cþ uniformly with respect to the spacial variable r.
Assumption 2. For any t 2 R the distribution J0ðt; rÞ is a compactly supported distribution in R3 and the Laplace transform
~J0ðs; rÞ ¼

R1
0 e�stJ0ðt; rÞdt exists and is uniformly bounded with respect to s 2 Cþ.

Due to Assumptions 1 and 2 we can Laplace-transform (1)–(3) to the system
r� ~H ¼ ~r~Eþ~J0;
r� ~E ¼ �sl~H

ð4Þ
for s 2 Cþ. The solution of (4) satisfies the boundary conditions at infinity
lim
krk!1

~H ¼ 0; lim
krk!1

~E ¼ 0:
Here all the variables with the tilde are functions of r and s. Then the time domain solution can be presented via the Fourier
integral as
EðtÞ ¼ 1
2pi

Z þi1

�i1
est ~EðsÞds ð5Þ
and similarly for HðtÞ. Assumption 1 yields stability of the Maxwell system, and together with Assumption 2 it gives well-
posedness of (1)–(3) (see Section 4).

The coefficient ~rðsÞ as a function of s can be approximated in Cþ by an ½m=m� rational function of the form:
rðsÞ ¼ r1 1þ pr
m�1ðsÞ
qr

mðsÞ

� �
; ð6Þ
where pm�1 and qm are respectively polynomials of degree m� 1 and m. As we mentioned before, ~r :¼ ~rðr; sÞ, so the coeffi-
cients of pm�1 and qm depend on r. Rational approximation (6) allows us to rewrite integral equation (2) as high order ODE
qr
mð@=@tÞJc ¼ r1qr

mð@=@tÞEþ r1pr
m�1ð@=@tÞE; ð7Þ
so we obtain high order PDE problem (1), (3) and (7). Generally, thanks to Assumption 1 rational approximations (6) uni-
formly converge in Cþ, so integral Eq. (2) can be formally rewritten as the infinite-order ODE.

The popular Cole and Cole [5] polarization model is given by
~rðsÞ ¼ r1 1� g
1þ ðssÞc

� �
: ð8Þ
Here s > 0 is the time decay parameter, the parameter 0 6 g < 1 is the so-called chargeability, 0 < c 6 1 is so-called relax-
ation parameter. All the above parameters depend on r. Under the assumption that g is bounded away from 1 uniformly with
respect to spacial variable it is easy to observe that the Cole–Cole conductivity satisfies Assumption 1.

The Cole–Cole formula (8) allows us to rewrite the integral equation (2) as fractional order differential equation
Jc þ scDc
t Jc ¼ r1ð1� gÞEþ scr1Dc

t E; ð9Þ
where the fractional derivative Da
t ;0 6 a 6 1 is a pseudo-differential operator [35] that can be defined as Da

t f ðtÞ ¼
1

2pi

Rþ1
�1

Rþ1
�1 saeist�issf ðsÞdsds (for regular enough f), and for a ¼ 1 it coincides with the conventional first derivative operator

(see also an equivalent definition via fractional diffusion operators [35]). So we obtain fractional order PDE problem (1), (3)
and (9).

Finally, (1) and (2) can be transformed to the electric field formulation problem
r�r� Eþ lr � @
@t

E ¼ �l @

@t
J0: ð10Þ
After spacial discretization using a proper finite-difference (or finite-element) method with N nodes we obtain
Auþ B � @
@t

u ¼ b; ujt<0 ¼ 0; ð11Þ
where u ¼ uðtÞ and b ¼ bðtÞ are N-dimensional vector-functions of t;A ¼ A� 2 RN�N is a positive-definite (on the divergence-
free subspace) stiffness matrix, B is a positive-definite mass matrix with entries obtained by discretization of lr on the
computational grid; * denotes convolution. For the non-dispersive case B ¼ B1dðsÞ, where B1 is a time-independent
positive-definite diagonal matrix and d is Dirac’s delta function, we obtain the first order ODE system with symmetric
positive-definite coefficients and time-dependent right hand side
Auþ B1
@

@t
u ¼ b; ujt<0 ¼ 0: ð12Þ
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Finally, assuming
b ¼ dðtÞb0 ð13Þ
with a vector b0 2 RN independent of time (corresponding to J0 ¼ uðrÞhð�tÞ, where hðtÞ is the Heaviside step-function), we
obtain the standard initial problem for the homogeneous second order equation for t > 0. Obviously, this problem is reduced
to computing the exponential
uðtÞ ¼ expð�tAÞb0 ð14Þ
assuming that B1 ¼ I.
Assumptions 1 and 2 allow us to obtain the Laplace transform of (11) in Cþ in the form
eAðsÞ~uðsÞ ¼ ~bðsÞ; ð15Þ
where
eAðsÞ ¼ Aþ seBðsÞ ð16Þ
is a complex symmetric N � N matrix value function, ~uðsÞ; ~bðsÞ are vector functions in CN .
Due to dependence of ~r on r matrices eAðsÞ for different values of s may not commute, otherwise the problem can be

solved using the conventional Krylov subspace approximation, as it was done for a convolutionary (fractional diffusion)
PDE in [19].

The time domain solution can be computed using the Fourier integral
uðtÞ ¼ 1
2pi

Z þi1

�i1
est ~AðsÞ�1~bðsÞds: ð17Þ
Our main application arises from geophysical deep hydrocarbon exploration, in which case A can be a large ill-conditioned
matrix. This problem is of multiscale nature and may require the solution for positive time intervals ½tmin; tmax� with large
ratio tmax=tmin. Evaluation of (17) using quadrature formulas directly may require evaluations of ~AðsÞ�1~bðsÞ for significant
number of s’s even using efficient specialized quadratures [31], that may be computationally very expensive.

3. Parameter-dependent Krylov subspace reduction

As it was already mentioned in the previous section, the convolutionary Maxwell’s system can be considered as an infi-
nite-order differential equation. In principle, this problem can be transformed to a first order system with infinite number of
unknowns [or ðmþ 1ÞN unknowns for (7)] and then solved using a structure preserving Krylov subspace projection method
of [13]. Here we suggest an approach allowing to avoid such increase of dimensionality.

We choose nðn 6 NÞ distinct complex parameters (frequencies) sj symmetrically with respect to the real axis, such that
they are not in the nonlinear spectrum of ~AðsÞ. Let us assume that the solutions of (15) for these frequencies are linearly inde-
pendent, i.e., they span subspace
Un ¼ spanfeAðs1Þ�1~bðs1Þ; eAðs2Þ�1~bðs2Þ; . . . ; eAðsnÞ�1~bðsnÞg: ð18Þ
Generally, it is similar to the subspaces generated in the parametric model reduction, hence the name: parameter-dependent
Krylov subspace reduction (PDKSR). For s 2 R both ~AðsÞ and ~bðsÞ are real, so ~uðsÞ ¼ �uð�sÞ, i.e., there is no need to compute the
solution for the conjugate sj. If ~b is independent on s, then Un is related to the Nonlinear Krylov Subspace introduced for solv-
ing nonlinear eigenproblems [30]. In addition, if eAðsÞ is a linear polynomial of s, then Un becomes the rational Krylov sub-
space and the PDKSR will be equivalent to the rational Krylov subspace reduction described in [9].

Remark 2. Our choice of parameters sj is given by the solution of the Zolotarev problem (see Appendix A) and they are
well separated. But we can imagine the case when several sj are very close to each other. In this case one should use
(possibly high order) derivatives of eAðsÞ�1~bðsÞ with respect to s for constructing Un. But this problem is out of the scope of
the current paper.

Let Gn ¼ fg1; . . . ; gng 2 RN�n be the matrix of an orthogonal basis on Un. Then the approximate solution of (15) is obtained
by projection to the PDKS as
~unðsÞ ¼ GnVnðsÞ�1ðGnÞT ~bðsÞ; ð19Þ
where
VnðsÞ ¼ ðGnÞT eAðsÞGn:
Obviously, any subspace reduction becomes efficient if n� N.
We use the following algorithm to construct Gn. Let us first assume that all sj are real (as in our numerical experiments,

see Section 5). We choose g1 to be the normalized eAðs1Þ�1~bðs1Þ. If we constructed already Gn�1, then compute
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rn ¼ eAðsnÞ�1 ~bðsnÞ � eAðsnÞGn�1VnðsÞ�1ðGn�1ÞT ~bðsnÞ
h i

: ð20Þ
Then we obtain gn via the Gram-Schmidt process by orthogonalizing rn to Gn�1. In the case of complex sj we consider only one
sj from every conjugate pair and do the Gram–Schmidt process consequently to Rrj and Irj to avoid complex vectors in the
basis. Sometimes this process requires up to three re-orthogonalizations to achieve orthogonality of the computer (double)
precision level. However, as we shall see, even in spite of the orhogonality of basis vectors, the algorithm loses approximately
half of significant digits, more precisely has a convergence plateau on the level of the square root of the roundoff error.

Finally we obtain the time-domain approximate solution unðtÞ via Fourier integral
unðtÞ ¼ 1
2pi

Z þi1

�i1
estGnVnðsÞ�1ðGnÞT ~bðsÞds; ð21Þ
that is computed using optimized contour deformations and quadratures developed in [31].

Remark 3. To compute unðtÞ, all n basis vectors of Un need to be stored in memory. That might be problematic for 3D large-
scale problems. Thanks to efficient choice of sj, we need to store at most 60 real solutions for accuracy 10�8 on the entire time
interval in our numerical examples (see Section 5).
4. Stability, passivity and interpolation properties of the parameter-dependent Krylov subspace reduction

Two essential properties associated with linear time-invariant dynamical systems are stability and passivity. A system is
stable, i.e., the solution is uniformly bounded in time, if it does not have spectral points in Cþ. The second question is whether
or not the system is passive, i.e., capable to generate energy without any external source [2,13]. Obviously, a passive system
is always stable. Let us define the nonlinear numerical range of eAðzÞ according to [15] as
WðeAÞ ¼ fz 2 C : vHeAðzÞv ¼ 0g
for some nontrivial v 2 CN , here H means Hermitian conjugate. For any w 2 Cn it follows wHVnw ¼ vHAv with v ¼ Gnw (from
the definition of Vn), so
WðVnÞ �WðeAÞ:

Therefore both uðtÞ and unðtÞ are passive, if
WðeAÞ � C�: ð22Þ
It is easy to see, that Assumption 1 is sufficient for validity of (22). In fact, entries of matrix operator eB in (16) are the nodal
values (or cell averages) of ~r (with factor l > 0) satisfying Assumption 1, so eB � 0 for s 2 Cþ. From that and positive-defi-
niteness of A we obtain that
R
1
s
eAðsÞ� �

¼ RðsÞ
jsj2

AþRð~BÞ � 0; for s 2 Cþ;
that yields (22). Let us now further restrict points si placing them in Cþ. By construction ~unðsÞ is the Galerkin approximation
of ~uðsÞ on the subspace of ~uðsjÞ, j ¼ 1; . . . ;n. We obtain the interpolation property of the approximate solution
~uðsjÞ ¼ ~unðsjÞ; j ¼ 1; . . . ;n
thanks to the uniqueness of the Galerkin solution for s 2 Cþ following from (22).

5. Solution of the induced polarization problem with the Cole–Cole conductivity model

We consider the three-dimensional problem of so-called control source electromagnetic exploration with the diffusive
Cole–Cole conductivity model (1), (3) and (9) and the ‘‘step-off” excitation mode given by J0 ¼ hð�tÞb0ðrÞ (hðtÞ is the Heav-
iside step-function). This problem is becoming increasingly important for electromagnetic hydrocarbon exploration [6, etc.].
Its multiscale nature requires the computation for time intervals including very small and large diffusion times, i.e., effec-
tively we need good accuracy in the sense
dn
L2 ½0;1� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
kunðtÞ � uðtÞk2 dt

s
:

The problem of optimal choice of a subspace Un, i.e., the choice of interpolation nodes sj; j ¼ 1; . . . ;n for accurate solution, was
rigorously solved for the non-dispersive diffusive case (12) in [9]. The Plancherel identity yields
dn
L2 ½0;1� 	

1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ i1

�i1
k~unðsÞ � ~uðsÞk2 ds

s
;
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i.e. the optimization problem is reduced to the frequency domain. The latter can be reduced to the third Zolotarev problem in
extended complex plane, that yields an optimal solution (in the Cauchy–Hadamard sense) with real si given in terms of ellip-
tic integrals (see Appendix A). The Zolotarev interpolating frequencies yield the following Cauchy–Hadamard error bound
lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn

L2 ½0;1�
n
q

/e�
p2

2 logð4jÞ; ð23Þ
where j is the condition number of the matrix pencil ðA;B1Þ. As one can see, logarithmic dependence of (23) on the condi-
tion number makes such choice of interpolating points efficient for large scale problems and rather weakly sensitive to the
errors in a priori spectral estimates. The real solution is another advantage of using the Zolotarev theory, because that greatly
simplifies handling of linear systems for interpolating frequencies.

The conductivity given by the Cole–Cole model has high frequency limit r1, i.e., Eqs. (10) and (12) has the same leading
terms, if the elements of diagonal matrix B1 are obtained using the discretization of lr1 on the same computational grid. So,
it is reasonable to assume that the interpolation points chosen for (12) are also good for (10). As we shall see, our numerical
experiments confirm this assumption, however a more rigorous analysis is needed.
Fig. 1. Medium for 3D test.
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Fig. 2. Electric response at transmitter position for both non-dispersive (inductive) and dispersive (polarized) problems.
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Consider the three-dimensional problem in the medium consisting of one finite body of size 6� 4� 0:3 km3 embedded
into two non-polarized layers (see its median vertical slice in Fig. 1). In the first case the body is non-polarized with g ¼ 0
and for the second case it is described by the Cole–Cole model with g ¼ 0:5; c ¼ 0:5; s ¼ 1 s. To construct Gn, we used the
preconditioned conjugate gradient algorithm of [36] for the solution of (15). Typically, solution of linear systems constitute
about 95% of the computational time, the rest is due to orthogonalization. In Fig. 2 we plotted the responses for the case
when the receiver and the transmitter coincide (see Fig. 1) (both vertical electric dipoles). The curves almost coincide for
t � s, but for larger t the non-normality of the operator for the polarized problem manifests itself by non-monotonic behav-
ior and sign reversal.

The convergence graphs are plotted in Fig. 3. For the both cases we used the same spatial discretization with N ¼ 3 
 105

and j � 1:3� 108 (estimated via the Gershgorin theorem). The both cases show similar convergence behavior with the linear
rate very well approximated by the theoretical estimate (23).

The computations were performed with the double precision, however the both curves have plateaus on the level of the
single precision. That indicates presence of cancelation effects in (20). Our experiments with the rational Arnoldi algorithm
of [27] applied to the induction problem showed no loss of accuracy. Unfortunately, that algorithm in the present form is
limited only to the RKS, i.e., the non-dispersive problems.
6. Conclusions

We developed a new algorithm for solution of diffusion Maxwell’s system in dispersive media (a.k.a. induced polariza-
tion). The algorithm is based on the parameter-dependent Krylov subspace reduction (PDKSR) with proper choice of sub-
space parameters. The latter is based on the rational Krylov subspace algorithm for the conventional (non-dispersive)
diffusion problem [9]. Our numerical results for the 3D problem show the same convergence rate for dispersive and non-
dispersive models (both coinciding with the theoretical optimal bound for the non-dispersive case).

The parameter-dependent Krylov subspace reduction can be extended to other convolutionary problems, such as electro-
magnetic and elastic wave propagation in dispersive media.

A detailed theoretical analysis of the new algorithm is in press [10].
Appendix A. Choice of si and the third Zolotarev problem

Here we give short summary of results obtained in [9,17] for the shift optimization for the classical diffusion (a.k.a. induc-
tive) problem. The optimal choice of si for this case can be reduced to the minimization problem
r̂n ¼ min
s1 ;...;sn

max
s2½kmin ;kmax �

jhð�sÞ=hðsÞj; ðA:1Þ
where



4838 M. Zaslavsky, V. Druskin / Journal of Computational Physics 229 (2010) 4831–4839
hðsÞ ¼
Yn

j¼1

ðsþ sjÞ:
Here kmin and kmax are the minimum and the maximum eigenvalues of matrix pencil ðA; B1Þ. This is the Zolotarev
problem, which is known to have solution with real values of parameters sj expressed in terms of elliptic integrals. Let K
and K 0 (see [1, Chapter 17]) be respectively the principal
Kð,Þ ¼
Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� t2Þð1� ,2t2Þ

q

and complementary
K 0ð,Þ ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ,2

p� �

complete elliptic integrals of modulus ,;0 < , < 1,
l ¼
ffiffiffiffi
j
p
� 1ffiffiffiffi

j
p
þ 1

� �2

and j ¼ kmax

kmin
:

We shall also need the Jacobi elliptic function
dnðv ;,Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ,2snðv ;,Þ2

q
;

where sn is another elliptic function defined by
snðv ;,Þ ¼ sin w; v ¼
Z w

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ,2 sin2 f

q

(see [1, Chapter 16]). In this case the solution of (A.1) is given by
sj ¼ kmax dn
2ðn� jÞ þ 1

2n
K 0ð1

j
Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

j2

r !
ðA:2Þ
for j ¼ 1; . . . ;n.

Remark 4. In practice we do not know kmin and kmax exactly, but have just their estimates. Different estimates might affect
the location of optimal points, but according to (23) it has just slight impact on the convergence rate.

Points sj fill ½kmin; kmax�, and for large j=n they are close to a geometric progression. The points yield the following (optimal
in the Cauchy–Hadamard sense) error bound
lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn

L2 ½0;1�
n
q

6 exp �p
4

 K
0ðlÞ

KðlÞ

� �
: ðA:3Þ
For j!1 the right hand side part of (A.3) can be simplified: using asymptotic expansions (see [1])
l ¼ 1� 4ffiffiffiffi
j
p þ o

1ffiffiffiffi
j
p
� �

; KðlÞ ¼ 1
2

log 2
ffiffiffiffi
j
p	 


þ oð1Þ; K 0ðlÞ ¼ p
2
þ oð1Þ;
we obtain
exp �p
4

 K
0ðlÞ

KðlÞ

� �
¼ e�

p2
2 logð4jÞ þ oð1Þ:
This yields (23).
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